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Abstract Complex mixtures are at the heart of biology,

and biomacromolecules almost always exhibit their func-

tion in a mixture, e.g., the mode of action for a spider

venom is typically dependent on a cocktail of compounds,

not just the protein. Information about diseases is encoded

in body fluids such as urine and plasma in the form of

metabolite concentrations determined by the actions of

enzymes. To understand better what is happening in real

living systems we urgently need better methods to char-

acterize such mixtures. In this paper we describe a potent

way to disentangle the NMR spectra of mixture compo-

nents, by exploiting data that vary independently in three or

more dimensions, allowing the use of powerful algorithms

to decompose the data to extract the information sought.

The particular focus of this paper is on NMR diffusion

data, which are typically bilinear but can be extended by a

third dimension to give the desired data structure.

Keywords Diffusion � Mixtures � DOSY � Relaxation �
PARAFAC � Trilinear � Multivariate

Introduction

NMR is a wonderfully versatile tool providing high quality

information about biological systems. It is at its best with

pure compounds, where all signals can safely be assumed

to come from the same molecular species. Mixture analy-

sis, however, is a much more difficult situation, and one

that is commonly avoided by purifying the sample before

NMR analysis. Such physical separation is often cumber-

some and expensive, and can even completely defeat the

purpose when it is the dynamics of the intact sample that

are of interest. Mother Nature often presents her most

interesting problems in the form of mixtures, and the

capability of efficiently analyzing such samples is a fun-

damental part of biological research. One front-line tech-

nique in NMR analysis of intact mixtures is diffusion-

ordered spectroscopy [DOSY (Johnson 1999; Morris

2007)], in which the signals from different compounds are

distinguished by their diffusion properties (most commonly

their hydrodynamic radii).

In a DOSY experiment the amplitudes of NMR signals

are attenuated as described by the Stejskal–Tanner equa-

tion (Stejskal and Tanner 1965):

S ¼ S0e�Dc2d2g2D0 ð1Þ

where S is the signal amplitude, S0 is the signal amplitude

in the absence of diffusion, D is the diffusion coefficient, d
is the gradient pulse duration, c is the gyromagnetic ratio,

g is the strength of the gradient, and D0 is the diffusion time

corrected for the effects of finite gradient pulse width.

Equation 1 is appropriate for most DOSY experiments, but
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when non-rectangular gradient pulses are used a modifi-

cation may be necessary (Sinnaeve 2012). The decays of

the various different signals of a given species in solution

thus encode information about its diffusion.

The simplest way to analyze the results of such experi-

ments is to treat each point or each peak in the NMR spec-

trum independently. While such basic DOSY analysis

frequently provides valuable information, it is however

limited by the classic difficulty of finding the constituent

signals in a sum of exponential decays with different (sim-

ilar) decay constants (Istratov and Vyvenko 1999; Nilsson

et al. 2006). This restricts the types of problems that can be

studied most productively to those where any overlapping

signals come from mixture components that have relatively

large differences in diffusion coefficient. For species which

do not have signals that overlap in the NMR spectrum,

DOSY can differentiate between molecules with as little as

1 % difference in diffusion coefficient, by using a numeri-

cally stable monoexponential fit [the High Resolution

DOSY experiment (Barjat et al. 1995)]. However, in the

general, and more common, case, signals do overlap, mak-

ing the task of inverting a measured signal decay to give a

diffusion spectrum much more difficult. This has spurred the

development of various more sophisticated methods for

processing DOSY data (Nilsson et al. 2006; Nilsson and

Morris 2006; Nilsson and Morris 2007, 2008; Nilsson 2009;

Colbourne et al. 2011; Van Gorkom and Hancewicz 1998;

Windig and Antalek 1997; Stilbs and Paulsen 1996; Stilbs

et al. 1996; Morris and Johnson 1993; Delsuc and Malliavin

1998; Day 2011; Stilbs 2013). They all have their pros and

cons, but for overlapping signals the smallest difference in

diffusion coefficient that can normally be resolved, even for

very high quality data, is typically 30 %. Another limitation

is that only a single separation criterion (diffusion) is used,

making it impossible to separate signals from compounds of

similar size, e.g., isomers. When appropriate this limitation

can be overcome by adding a co-solute (a matrix) that

changes the diffusion behavior of one or more of the species:

matrix-assisted DOSY (Evans et al. 2009; Tormena et al.

2010; Adams et al. 2011; Rogerson et al. 2011; Cassani et al.

2012; Tormena et al. 2012; Zielinski and Morris 2009; Viel

et al. 2003; Hoffman et al. 2008; Morris et al. 1994; Stilbs

1982; Kavakka et al. 2010).

Another way of looking at the task of resolving com-

ponents in a DOSY data set is from a matrix algebra, or

multivariate, point of view, analyzing the dataset as a

whole rather than treating the diffusional attenuation of

each point or peak in the NMR spectrum separately

(Nilsson and Morris 2008; Windig and Antalek 1997;

Stilbs and Paulsen 1996; Stilbs et al. 1996; Van Gorkom

and Hancewicz 1998; Stilbs 2013, 2010). Here the structure

of the DOSY data is bilinear (varying independently in two

directions):

X ¼ CTSþ E ð2Þ

where X is the full data set consisting of a set of mixture NMR

spectra (rows) that change in amplitude with each successive

row as the pulsed field gradient amplitude is varied. The

contributions of the individual mixture components can be

described as a sum of the product of each spectrum, S, with

the transpose of the signal amplitude profile (here an

exponential decay as a function of the square of gradient

amplitude) C, leaving the residual (or experimental noise) E.

In algebraic form this can be denoted:

X ¼
XN

n¼1

cn � sn þ E ð3Þ

where cn and sn are the signal amplitude profile and the

spectrum for the nth component, � is the Kronecker

product, and N is the number of components in the mixture.

The decomposition of X into C and S typically requires

constraints to be imposed if it is to yield physically sensible

results, because many possible linear combinations fit the

data equally well (the rotational ambiguity problem).

Common constraints include non-negativity, and imposing

a known functional form for the signal decay.

Interestingly, when a third (or further) independent

dimension is added, so that Eq. 3 becomes Eq. 4, the

rotational ambiguity is broken (Cattell 1944):

X ¼
XN

n¼1

cn � sn � kn þ E ð4Þ

This has two important consequences: (1) no constraints (or

prior knowledge) are needed to obtain physically sensible

results; (2) the combination of the variance in the S and

K modes works in synergy, and much more complicated

problems can be attacked than by investigating the S and

K modes separately (Harshman 1970). The decomposition

works best for a small number of monodisperse compo-

nents (i.e., a low rank problem). The most common algo-

rithm for decomposing multilinear data is parallel factor

analysis [PARAFAC (Bro 1997)]. The bilinear case (Eq. 3)

is not hard to visualize: it is intuitive that multiplying the
1H spectrum with a vector containing the signal decay with

increased gradient level should represent the contribution

of that component to the DOSY data matrix. With that in

mind it is then straightforward to extrapolate to additional

dimensions. If a DOSY experiment is e.g., recorded for

each time point during a chemical reaction then it is clear

that the contribution of one chemical component to the

whole data set is the (Kronecker) product of its 1H spec-

trum, decay profile and concentration with time. A pictorial

representation of PARAFAC is given in Fig. 1.

The PARAFAC decomposition is very powerful when

the data conform to the trilinear model [e.g., it can resolve
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components from data that appear to be without signal

(Khajeh et al. 2010)], but is also correspondingly sensitive

so e.g., small changes in NMR peak shape and frequency

will cause a failure to extract physically sensible compo-

nents, if care is not taken to correct for such inconsistencies

(Nilsson and Morris 2006). Interestingly, the addition of an

extra dimension need not be costly in experimental time as

in theory (Stegeman et al. 2006) as well as in practice

(Nilsson et al. 2009a) the size in each dimension can be

small.

Multilinear data analysis has been exploited in chemis-

try using fluorescence data since 1981 (Appellof and

Davidson 1981). For diffusion NMR data, however, this

application is just in its infancy (Dyrby et al. 2005;

Pedersen et al. 2006). Even so, its use has already been

demonstrated in a number of applications. For a set of

samples containing glucose, maltose and maltotriose (Bro

et al. 2010) or glucose, lactose and isoleucine (Pedersen

et al. 2006) the spectra, diffusion decay and concentrations

have been recovered when concentrations were set up as a

fractional factorial design in order to optimize the variance.

In a real application, PARAFAC was used to analyze the

blood lipoprotein profile of a set of samples (Dyrby et al.

2005). PARAFAC has also been used to resolve time

evolution and spectra for the acid hydrolysis of saccharides

(Nilsson et al. 2009b; Khajeh et al. 2010), demonstrating

the possibility of extracting kinetic information even for

severely overlapped spectra, for spectra with a signal-to-

noise level below the normal limit of detection, and for

intermediates which may not be available in pure form. A

special case is the use of relaxation as the third dimension,

as this enables both the analysis of a single sample in

equilibrium, and the extraction of relaxation information

that can be used to understand better the dynamics of the

molecules in the sample (Nilsson et al. 2009a).

In this investigation we demonstrate trilinear decom-

position of NMR diffusion data on a set of samples with

randomized concentrations within a narrow concentration

band, a model system that more closely resembles e.g.,

metabolomics samples than was the case for previous

studies. In addition, we show for a prototypical complex

single sample that relaxation–diffusion encoded data can

allow the construction of a superior DOSY representation.

This is a step towards being able to analyze complex bio-

logical samples more efficiently by NMR.

Experimental

For the diffusion-concentration-NMR spectrum study, the

sample set was comprised of 20 liquid samples, all con-

taining low mM concentrations of 1-propanol

(2.4–5.6 mM), 1-butanol (2.8–5.7 mM) and 1-pentanol

(1.3–2.4 mM) in D2O, with sodium 3-(trimethylsilyl)-pro-

pionate-2,2,3,3 d4 (TSP) as a reference. All experimental

measurements were carried out non-spinning at 298 K on a

500 MHz Varian Unity spectrometer using a 5 mm
1H/13C/15N triple probe. The data were acquired using the

Oneshot (Pelta et al. 2002) sequence with an imbalance

factor a = 0.2, using a diffusion delay D = 100 ms, a

diffusion-encoding pulse width d = 1 ms, and 10 nominal

gradient amplitudes ranging from 3 to 27 G cm-1 in equal

steps of gradient amplitude squared. 16,384 complex points

were collected in 16 transients. The time-domain data were

zero-filled once, apodized, and Fourier transformed.

For the diffusion–relaxation-NMR spectrum study, a

sample was also evaluated containing the natural products

camphene, geraniol and quinine, dissolved in methanol-d4

with TMS as a chemical shift reference. Measurements

were carried out without temperature regulation and non-

spinning on a Varian Inova 400 MHz spectrometer in an

air-conditioned room at approximately 20 �C, without

spectrometer temperature regulation and with a passive

probe air preconditioning system used to minimize tem-

perature instabilities (Bowyer et al. 2001). A DRONE45

experiment, combining the decaying relaxation oneshot

(DRONE) (Nilsson et al. 2009a) adaptation of the Oneshot

method with the Oneshot45 variant (Botana et al. 2011),

was carried out; here relaxation is encoded by incrementing

the diffusion delay while keeping the diffusion encoding

constant. The experiment was run with 5 gradient strength

levels (ranging from 10.0 to 27.0 G cm-1 in equal steps

of nominal gradient squared) and 5 relaxation delays

(s ranging from 0.2 to 3.2 s), making a total of 25 spectra,

which were acquired with an initial delay d1 of 5 s and with

16,384 complex data points and 16 transients. The total

acquisition time was 1 h 7 min. All spectra were manually

phased, reference deconvoluted with a target line shape of

a 2 Hz Lorentzian (Morris et al. 1997), and baseline cor-

rected in VnmrJ 2.2C before being exported to a text file.

This file was imported into Matlab and processed by seg-

menting the spectrum into several regions and performing

X = ++ +... E

c1 c2 cn

s1 s2

k2

sn

knk1

Fig. 1 A schematic representation of the PARAFAC model. In this investigation ci and si represents the decay with diffusion and the 1H NMR

spectrum for each component respectively, while ki is the independent third dimension
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PARAFAC analysis, with a suitable number of compo-

nents, for each of them. The results were then plotted as

DOSY-like spectra in which the positions of the peaks in

the diffusion dimension are determined by the diffusion

coefficients obtained by fitting the PARAFAC output for

the diffusion-encoded dimension to Eq. 1, and the widths

of the peaks are determined by the fit statistics.

For comparison with the DRONE experiment, a DOSY

data set for a very similar sample (quinine, camphene and

geraniol with TSP in methanol-d4) from a previous publi-

cation (Colbourne et al. 2011) was used. This was acquired

with the same spectrometer and temperature using the

Oneshot (Pelta et al. 2002) sequence, with an imbalance

factor a = 0.2, together with a diffusion delay

D = 200 ms, a diffusion-encoding pulse width d = 2 ms,

and 30 nominal gradient strength levels ranging from 3 to

27 G cm-1 in equal steps of gradient strength. 16,384

complex points were collected in 256 transients.

DOSY spectra were produced using the DOSY Toolbox

(Nilsson 2009).

For the three-way decompositions, an open-source

PARAFAC algorithm was used, as included in the N-way

toolbox (Andersson and Bro 2000). Small changes were

made to the code, but the functional part of the algorithm

was used as provided.

Results and discussion

There are many situations in which the same components

are present, at different concentrations, in a set of sam-

ples. Examples include a set of urine samples from dif-

ferent subjects in a metabolomics study, and a number of

blood samples taken at different time points to follow the

effects of administration of a drug to a patient. There are

mixture analysis methods currently in use that are much

better equipped to handle such samples, e.g., confocal

microscopy on antibody-labelled samples (Barbe et al.

2008); and mass spectrometry, which in combination with

chromatography has been used to identify around 10,000

different protein species in a cell line (Geiger et al. 2012),

but these methods are often tedious, expensive and

destructive.

The merits of NMR, in comparison, include the possi-

bility of performing experiments under native-like condi-

tions, and without additional labeling. However, the types

of samples just mentioned are highly complex, containing

hundreds of detectable compounds, and to try to determine

the concentration profiles of all measurable components by

multivariate means would be highly ambitious. As a first

step, we need to study a far more constrained problem. A

(very) simplified model of a biological study is a set of

samples in which the concentrations of a small set of

components are independently varied randomly to exclude

complications of covariance, in a limited concentration

band. Here we have chosen three simple alcohols that have

too similar hydrodynamic radii to be resolved by diffusion

alone (e.g., in a DOSY experiment). In Fig. 2, the spectra

extracted by PARAFAC from DOSY data measured from a

set of 20 mixture samples are shown to be virtually iden-

tical to those of reference spectra. In a study on real

samples the likely desired outputs will be the spectra (to

identify the components) and their concentrations in the

respective samples. Here we show that the estimated con-

centrations very closely resemble those of the initial design

(Fig. 3), with a substantial part of the remaining error

expected to arise from uncertainties in the sample prepa-

ration (e.g., solvent and/or solute evaporation). It should

also be noticed that the estimated concentration of each

Fig. 2 Component spectra (bottom) obtained from a 3-component

PARAFAC fit of diffusion NMR data from 20 samples containing

randomized mixtures of propan-1-ol, butan-1-ol, and pentan-1-ol, and

reference spectra (top)
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component may be arbitrarily rescaled as long as the

product remains constant. This means that some sort of

reference—e.g., a compound of known concentration in the

mixture—is required if absolute amplitudes of the factors

are required.

Mixture analysis in a set of samples is very important,

and lends itself well to trilinear analysis. However, in

many cases it is the composition of a single, intact,

sample that is of interest. Now we are much more limited

in the third dimension, but T1 relaxation has previously

been shown to help disentangle the spectra of a two-

component system (Nilsson et al. 2009a). As relaxation

differs for nuclei in chemically-distinct sites in a mole-

cule, the resulting diffusion–relaxation encoding data

(Fig. 4) is only locally, not globally, trilinear. However,

as each multiplet shows, to a good approximation in

practical experiments using full excitation, the same T1

relaxation, the spectrum can be divided into regions that

each contain only signal from one multiplet per compo-

nent, and a local PARAFAC decomposition can be per-

formed on each region independently. The results can

then be merged into a composite data set in which the

diffusion mode is the same for each component. A good

way to display such data is in a DOSY plot, as in Fig. 5,

where the DOSY plots from a standard HR-DOSY and a

‘‘T1-DOSY’’ plot from a 5 component mixture (quinine,

camphene, geraniol, and residual OH signals from meth-

anol and water [from the solvent]) are shown. Spectral

overlap causes signals to appear at misleading apparent

diffusion coefficients in the HR-DOSY spectrum, com-

plicating its interpretation. In the T1-DOSY spectrum, in

contrast, interpretation is much more straightforward. A

method that is globally, rather than merely locally, linear

for a single sample would be a substantial improvement;

investigations are under way into averaging out effective

relaxation rates within a spin system by magnetization

transfer techniques.

Although this study was focused on extracting the

spectra of individual compounds by exploiting differences

in their diffusion coefficients, similar analyses can be

performed using differences in both diffusion and relaxa-

tion. In macromolecules this would not only allow mole-

cules aggregated to different extents to be distinguished,

but would also allow different regions of a single macro-

molecule with different local dynamics to be identified

using relaxation information.

Fig. 3 Estimated concentration plotted against known concentration

for 20 samples containing randomized mixtures of propan-1-ol,

butan-1-ol, and pentan-1-ol

Diffusion encoding

R
el

ax
at

io
n 

en
co

di
ng

Fig. 4 Raw experimental data from the T1-DOSY experiment.

Relaxation and diffusion encoding are shown for representative

signals originating from quinine and camphene between 3.9 and

4.1 ppm
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Conclusions

The ability to characterize complex mixtures is important

to anyone working with biological systems. Unfortunately

NMR, one of our most powerful spectroscopic tools, often

struggles when applied to mixtures. New and better

methods of analyzing biological samples by NMR would

be very welcome. Here we illustrate the use of NMR dif-

fusion data in combination with powerful multi-way

decompositions as a promising route to a better under-

standing of mixture spectra. Clearly there is a lot of work to

be done before we can attack more complex problems, but

it is already evident that this method can help unravel

problems with limited numbers of components that were

previously inaccessible to NMR analysis.
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